Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.24.550423

ABSTRACT

Background: Host response is critical to the onset, progression, and outcome of viral infections. Since viruses hijack the host cellular metabolism for their replications, we hypothesized that restoring host cell metabolism can efficiently reduce viral production. Here, we present a viral-host Metabolic Modeling (vhMM) method to systematically evaluate the disturbances in host metabolism in viral infection and computationally identify targets for modulation by integrating genome-wide precision metabolic modeling and cheminformatics. Results: In SARS-CoV-2 infections, we identified consistent changes in host metabolism and gene and endogenous metabolite targets between the original SARS-COV-2 and different variants (Alpha, Delta, and Omicron). Among six compounds predicted for repurposing, methotrexate, cinnamaldehyde, and deferiprone were tested in vitro and effective in inhibiting viral production with IC50 less than 4uM. Further, an analysis of real-world patient data showed that cinnamon usage significantly reduced the SARS-CoV-2 infection rate with an odds ratio of 0.65 [95%CI: 0.55~0.75]. Conclusions: These results demonstrated that vhMM is an efficient method for predicting targets and drugs for viral infections.


Subject(s)
COVID-19 , Virus Diseases , Severe Acute Respiratory Syndrome , Attention Deficit and Disruptive Behavior Disorders
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.14.528496

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of ACE2 expression may represent an effective tactic employed by SARS-CoV-2 to facilitate its own propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. By employing an array of 45 different luciferase reporters, we identify that the transcription factor Sp1 positively and HNF4 negatively regulate the expression of ACE2 at the transcriptional levels in HPAEpiC cells, a human lung epithelial cell line. SARS-CoV-2 infection promotes and inhibits the transcription activity of Sp1 and HNF4, respectively. The PI3K/AKT signaling pathway, which is activated by SARS-CoV-2 infection, is a crucial node for induction of ACE2 expression by increasing Sp1 phosphorylation, an indicator of its activity, and reducing HNF4 nuclear location. Furthermore, we show that colchicine could inhibit the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. Inhibition of Sp1 by either its inhibitor mithramycin A or colchicine reduces viral replication and tissue injury in Syrian hamsters infected with SARS-CoV-2. In summary, our study uncovers a novel function of Sp1 in regulating ACE2 expression and suggests that Sp1 is a potential target to reduce SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1794955.v1

ABSTRACT

People living with chronic disease, particularly seniors older than 60 years old, are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. However, this special population made up of most severe symptom and death cases among SARS-CoV-2 infected patients and should be prioritized in vaccination program. Thus, safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitancy in this special population. Here, we report a retrospective cohort study evaluating the immunogenicity and safety of the inactivated COVID-19 vaccine, CoronaVac, in people with at least one of the six common diseases, focusing on seniors (N = 969). We found that CoronaVac is as safe in people with chronic diseases as that in healthy control, without serious adverse event reported in this study. By day 14-28 post vaccination, we observed no significant difference for the antibody responses between disease groups and healthy control, except for the coronary artery disease (p=0.03) and chronic respiratory disease group (p=0.04) showing moderate reduction. Such difference diminished by day 90 and 180, as neutralizing antibodies significantly reduced in all participants. Most people showed detectable SARS-CoV-2-specific T cell response at day 90 and day 180 without significant difference between disease groups and healthy control. Overall, our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases, addressing vaccine hesitancy for this special population.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.24.449680

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. Here we showed that SARS-CoV-2-triggeed MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation alterred various signaling pathways in alveolar epithelial cells, particularly, led to the production of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
Lung Diseases , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Acute Lung Injury , COVID-19 , Inflammation
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.12.443228

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global crisis, urgently necessitating the development of safe, efficacious, convenient-to-store, and low-cost vaccine options. A major challenge is that the receptor-binding domain (RBD)-only vaccine fails to trigger long-lasting protective immunity if used solely for vaccination. To enhance antigen processing and cross-presentation in draining lymph nodes (DLNs), we developed an interferon (IFN)-armed RBD dimerized by immunoglobulin fragment (I-R-F). I-R-F efficiently directs immunity against RBD to DLN. A low dose of I-R-F induces not only high titer long-lasting neutralizing antibodies but also comprehensive T cell responses than RBD, and even provides comprehensive protection in one dose without adjuvant. This study shows that the I-R-F vaccine provides rapid and complete protection throughout upper and lower respiratory tracts against high dose SARS-CoV-2 challenge in rhesus macaques. Due to its potency and safety, this engineered vaccine may become one of the next-generation vaccine candidates in the global race to defeat COVID-19.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.16.440104

ABSTRACT

In the search for treatment schemes of COVID-19, we start by examining the general weakness of coronaviruses and then identify approved drugs attacking that weakness. The approach, if successful, should identify drugs with a specific mechanism that is at least as effective as the best drugs proposed and are ready for clinical trials. All coronaviruses translate their non-structural proteins (~16) in concatenation, resulting in a very large super-protein. Homo-harringtonine (HHT), which has been approved for the treatment of leukemia, blocks protein elongation very effectively. Hence, HHT can repress the replication of many coronaviruses at the nano-molar concentration. In two mouse models, HHT clears SARS-CoV-2 in 3 days, especially by nasal dripping of 40 ug per day. We also use dogs to confirm the safety of HHT delivered by nebulization. The nebulization scheme could be ready for large-scale applications at the onset of the next epidemics. For the current COVID-19, a clinical trial has been approved by the Ditan hospital of Beijing but could not be implemented for want of patients. The protocol is available to qualified medical facilities.


Subject(s)
COVID-19 , Muscle Weakness , Leukemia
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.30.437647

ABSTRACT

Safe and effective vaccination is critical to combatting the COVID-19 pandemic. Here, we developed a trimeric SARS-CoV-2 receptor-binding domain (RBD) subunit vaccine candidate that simulates the natural structure of the spike (S) trimer glycoprotein. Immunization with RBD-trimer induced robust humoral and cellular immune responses and a high level of neutralizing antibodies that were maintained for at least 4 months. Moreover, the antibodies that were produced in response to the vaccine effectively neutralized the SARS-CoV-2 501Y.V2 variant. Of note, when the titers of the antibodies dropped to a sufficiently low level, only one boost quickly activated the anamnestic immune response, resulting in complete protection against the SARS-CoV-2 challenge in rhesus macaques without typical histopathological changes or viral replication in the lungs and other respiratory tissues. Our results indicated that immunization with SARS-CoV-2 RBD-trimer could raise long-term and broad immunity protection in nonhuman primates, thereby offering an optimal vaccination strategy against COVID-19.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.285940

ABSTRACT

The current COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has an enormous impact on human health and economy. In search for therapeutic options, researchers have proposed resveratrol, a food supplement with known antiviral, anti-inflammatory and anti-oxidant properties as an advantageous antiviral therapy for SARS-CoV-2 infection. Here, we provide evidence that both resveratrol and its metabolically more stable structural analog, pterostilbene, exhibits potent antiviral properties against SARS-CoV-2 in vitro. Resveratrol and pterostilbene showed antiviral activity in African green monkey kidney cells and in human primary bronchial epithelial cells cultured in an air-liquid interface system. Mechanistic analyses demonstrated that both compounds actively interfere with the post-entry steps of virus replication cycle and their antiviral activity is long-lasting. Collectively, our data indicate that resveratrol and pterostilbene are promising antiviral compounds to treat SARS-CoV-2 infection and advocate evaluation of these compounds in clinical trials.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.312355

ABSTRACT

Coronavirus Disease 2019 (COVID-19) represents a new global threat demanding a multidisciplinary effort to fight its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this regard, immunoinformatics may aid to predict prominent immunogenic regions from critical SARS-CoV-2 structural proteins, such as the spike (S) glycoprotein, for their use in prophylactic or therapeutic interventions against this rapidly emerging coronavirus. Accordingly, in this study, an integrated immunoinformatics approach was applied to identify cytotoxic T cell (CTC), T helper cell (THC), and Linear B cell (BC) epitopes from the S glycoprotein in an attempt to design a high-quality multi-epitope vaccine. The best CTC, THC, and BC epitopes showed high viral antigenicity, lack of allergenic or toxic residues, and suitable HLA-viral peptide interactions. Remarkably, SARS-CoV-2 receptor-binding domain (RBD) and its receptor-binding motif (RBM) harbour several potential epitopes. The structure prediction, refinement, and validation data indicate that the multi-epitope vaccine has an appropriate conformation and stability. Three conformational epitopes and an efficient binding between Toll-like receptor 4 (TLR4) and the vaccine model were observed. Importantly, the population coverage analysis showed that the multi-epitope vaccine could be used globally. Notably, computer-based simulations suggest that the vaccine model has a robust potential to evoke and maximize both immune effector responses and immunological memory to SARS-CoV-2. Further research is needed to accomplish with the mandatory international guidelines for human vaccine formulations.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Ataxia
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.311027

ABSTRACT

SARS-CoV-2 is the underlying cause for the COVID-19 pandemic. Like most enveloped RNA viruses, SARS-CoV-2 uses a homotrimeric surface antigen to gain entry into host cells. Here we describe S-Trimer, a native-like trimeric subunit vaccine candidate for COVID-19 based on Trimer-Tag technology. Immunization of S-Trimer with either AS03 (oil-in-water emulsion) or CpG 1018 (TLR9 agonist) plus alum adjuvants induced high-levels of neutralizing antibodies and Th1-biased cellular immune responses in animal models. Moreover, rhesus macaques immunized with adjuvanted S-Trimer were protected from SARS-CoV-2 challenge compared to vehicle controls, based on clinical observations and reduction of viral loads in lungs. Trimer-Tag may be an important new platform technology for scalable production and rapid development of safe and effective subunit vaccines against current and future emerging RNA viruses.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.311977

ABSTRACT

Understanding the pathogenesis of the SARS-CoV-2 infection is key to develop preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in-vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intra-nasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 pfu SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactive and/or spinal bulbs) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post inoculation in hamsters and ferrets respectively. Virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL